Definition 0.1. Increasing returns to scale:

$$F(Ax, Ay) > AF(x, y), \tag{1}$$

where A > 1.

Definition 0.2. Decreasing marginal returns:

$$F(Ax,y) < AF(x,y), \tag{2}$$

where A > 1.

Decreasing marginal returns mathematically means:

$$\frac{\partial^2 F}{\partial x^2} < 0. \tag{3}$$

If we have decreasing marginal returns on two inputs:

$$F(Ax,y) < AF(x,y),$$

$$F(x,Ay) < AF(x,y),$$
(4)

we can still have increasing returns to scale.

Example 0.3. Consider the Cobb-Douglas functional form:

$$F(K,L) = AK^{\alpha}L^{\beta},\tag{5}$$

where $0 < \alpha < 1$ and $0 < \beta < 1$. Then, for a > 1,

$$F(aK, aL) = a^{\alpha+\beta}AK^{b}L^{c} = a^{\alpha+\beta}F(K, L),$$
(6)

it has IRS if $\alpha + \beta > 1$, CRS if $\alpha + \beta = 1$, and DRS if $\alpha + \beta < 1$.

But we have decreasing marginal returns in all the above 3 ways since, say for *K*,

$$\frac{\partial F}{\partial K} = \alpha A K^{\alpha - 1} L^{\beta}$$

$$\Rightarrow \frac{\partial^2 F}{\partial x^2} = \alpha \times \underbrace{(\alpha - 1)}_{<0 \text{ since } 0 < \alpha < 1} \times A K^{\alpha - 1} L^{\beta} < 0,$$
(7)

which is not related to the sum of α and β .

Theorem 0.4. *If we have decreasing returns to scale, we must have two decreasing marginal returns.*

Proof. If we have decreasing returns to scale:

$$F(Ax, Ay) < AF(x, y), \tag{8}$$

where A > 1, then we must have

$$F(Ax,y) < F(Ax,Ay) < AF(x,y),$$

$$F(x,Ay) < F(Ax,Ay) < AF(x,y),$$

$$F(x,Ay) < F(Ax,Ay) < AF(x,y),$$
by monotonicity
(9)

since the function *F* is increasing on both variables and *x* and *y* are both positive, then Ax > x and Ay > y.